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Abstract
The lubrication equation that governs the dynamics of thin liquid films can be augmented to
account for stochastic stresses associated with the thermal fluctuations of the fluid. It has been
suggested that under certain conditions the spreading rate of a liquid drop on a surface will be
increased by these stochastic stresses. Here, an atomistic simulation of a spreading drop is
designed to examine such a regime and provide a quantitative assessment of the stochastic
lubrication equation for spreading. It is found that the atomistic drop does indeed spread faster
than the standard lubrication equations would suggest and that the stochastic lubrication
equation of Grün et al (2006 J. Stat. Phys. 122 1261–91) predicts the spread rate.

(Some figures in this article are in colour only in the electronic version)

1. Background

The dynamics of thin liquid films are important in a range
of applications, and in most cases thin liquid film predictions
can be made via simplifications of the full Navier–Stokes
equations. This simplification is usually founded on an
assumption of a small capillary number Ca ≡ ηU/γ , where
U is the relevant velocity scale, η is the liquid viscosity, and
γ is the free surface tension. For our discussions η and
γ are assumed constant. When the thickness of the film d
is much smaller than its other spatial dimensions, say λ, a
long-wave approximation λ � d is also employed giving
the so-called lubrication limit of the flow equations. With
these assumptions and standard no-slip and stress-balance
boundary conditions at the wall and free surface, a single
partial differential equation can be constructed that governs the
film thickness h(x, t) [12]. Further modifications have been
employed to model the behavior of evaporating films [2].

However, experimental observations [11] and molecular
simulations [16] suggest that thermal stresses, which are not
included in the standard analysis, can affect the fluid film
mechanics. Moseler and Landman [16] demonstrated the
necessity of including thermal stresses to even qualitatively
reproduce the evolving shape of the surface tension instability
of a nanometer-scale jet. Hennequin et al [11] suggest in regard

to a colloid–polymer model that the amplitude of thermal
fluctuations per se will affect the size distribution in droplet
formation.

To account for such effects associated with thermal
fluctuations, Grün et al [7] incorporated stochastic stresses into
the lubrication model and suggested that thermal fluctuations
will decrease the rupture time for unstable thin liquid films.
Starting from a similar formulation, Davidovitch et al [4]
predicted that the spreading of a self-similar droplet on a
smooth, flat surface can be primarily driven by these fluctuating
thermal stresses, which will increase the power-law spreading
rate from the standard surface tension spreading Tanner’s
law [20] of t1/7 up to t1/4. This predicted enhanced spreading
rate is the focus of this paper. We are not able to study
this specific self-similar regime, but we are able to directly
compare predictions of atomistic simulation with the stochastic
lubrication formulation of Grün et al [7].

Thermal fluctuations in thin liquid films are primarily
manifested in perturbations of the fluid interface. The scale
of these perturbations are characterized by a thermal length
lT = √

kBT /γ , with kBT the thermal energy scale of the
fluid. For normal fluids this length scale is, of course, of atomic
dimensions, with concomitant timescales significantly smaller
than microseconds. Because of the difficulty in measuring
fluid flow at such small length and short timescales, direct
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examination of the temporal evolution of such fluid flows is
limited. Most experimental observations are based upon one of
two models: colloid–polymer interfaces [1, 11] or polystyrene
thin films [13, 14, 24, 19]. Because of their effectively low
surface tensions and high viscosities, the interfaces of colloid–
polymer films have significantly larger perturbation length and
timescales than their simple-fluid counterparts. However, the
complex and poorly characterized fluid properties of colloid–
polymers hinder direct comparison to continuum fluid models.
Polystyrene films are advantageous in that they can be formed
to precise thicknesses and have high enough viscosities to
slow timescales, but it is difficult to sort out any thermal
stress phenomenology from behavior associated with their
viscoelastic character [13, 24], local variations in viscosity
caused by confinement [14, 23], and non-local interactions
with the wall [19]. These complexities also hinder direct
comparison to continuum fluid models.

Atomistic simulations of model fluids have been used
effectively to investigate the role of stochastic thermal
stresses [16], and we take this approach here to assess the
stochastic lubrication equation for spreading. If we accept that
the model provided by empirical atomic interaction potentials
is sufficiently realistic to test the assertions in the stochastic
lubrication equations, then the primary limitation of the scope
of such an investigation is its computational cost. The
key distinction between this work and previous atomistic
simulations of spreading drops [10, 8] is that our simulation
is specifically designed to examine the thermally dominated
regime by using a large, three-dimensional, relatively long-
time simulation of a simple-fluid low viscosity drop.

2. Theoretical framework

2.1. Thermal stresses

A thermally augmented lubrication equation [7] can be
developed by adding a term ∇ · S into the Navier–Stokes
momentum equation that models the stochastic stresses that
arise via the thermal fluctuations:

ρ
Du
Dt

= −∇ p + η∇2u + ∇ · S, (1)

where u is the fluid velocity, p is the pressure, and S is a
Gaussian white noise stochastic stress tensor. This stress has
zero mean (〈S〉 = 0) and its autocorrelation

〈Si j (r, t)Skl (r′, t ′)〉 = 2ηkBT δ(r−r′)δ(t −t ′)(δilδ jm +δimδ jl)

(2)
is fixed via the fluctuation-dissipation theorem.

Including this stochastic stress in their development of
thin-film equations, Grün et al [7] showed that it modifies
the governing equation for film thickness y = h(x, t), where
x is the coordinate parallel to the wall in the direction of
spreading. To develop such a one-dimensional model requires
homogenization in z, parallel to the contact line, which is
tantamount to averaging over a length W in the z direction.
We will see that our computational domain is designed to
be a thin three-dimensional slab of width W in z, which is

both computationally convenient and precisely sets W . The
resulting governing equation is

∂h

∂ t
= ∂

∂x

[
− γ

3η
h3 ∂3h

∂x3
+ βh3/2N (x, t)

]
, (3)

where β ≡ √
2kBT /3ηW and N (x, t) is a normalized

Gaussian white noise random variable, with 〈N (x, t)〉 = 0
and

〈N (x, t)N (x ′, t ′)〉 = δ(x − x ′)δ(t − t ′). (4)

Full details of this derivation are provided by Grün et al [7].

2.2. Evaporation

A low molecular weight polymer is used for these simulations.
This has the advantage of having a relatively low liquid-state
viscosity, which increases the rate of spreading and thereby
increases the scope of this study, but it also has a drawback
of non-negligible evaporation, which we therefore include in
our thin-film model. The model we employ uses a linearized
non-equilibrium evaporation model of Scrage [18], which has
been used to study the dynamics of small confined bubbles [2]
as well as an atomistic meniscus [6]. In this model, the mass
flux of evaporation J ∗ is linearly proportional to the pressure
jump across the interface,

J ∗ = ρv

(
2π

RT i

)1/2 (
pe

v

pv
− 1

)
, (5)

with ρv the vapor density, R the mass-specific gas constant, T i

the temperature at the fluid–vapor interface, and pe
v and pv the

equilibrium vapor pressure and local pressure at the interface,
respectively.

For non-dimensionalization, we follow Ajaev and
Homsy [2] and define velocity and pressure scales

U = kT ∗
s

ρLl
p = γ

l
(6)

with k the thermal conductivity of the fluid, L the latent heat of
vaporization, T ∗

s the equilibrium saturation temperature, ρ the
liquid density, and l an appropriate macroscopic length scale,
which we take to be the x-domain length of the simulation.
With these, the non-dimensional mass flux is

J = δv(p − pv) + T i − 1

K
, (7)

where

K = ρU
√

2πRT ∗
s

2ρvL
and δv = γ

ρLl
. (8)

As explained by Ajaev et al [2], K represents the relative
importance of kinetic effects in changing local vapor pressure
and δv relates the change in local pressure of the liquid to
changes in local evaporation temperature.
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2.3. Capillary scaling

To balance the effects of pressure driven flow, evaporation, and
thermally driven flow, we applied the scalings of Ajaev and
Homsy [2],

x = Ca1/6l x̂, y = Ca1/3l ŷ, h = Ca1/3lĥ,

t = Ca2/3 l

U
t̂, u = Ca−1/2Uû, v = Ca−1/3U v̂,

J = Ca−1/3 Ĵ , K = Ca1/3 K̂ .

To retain the stochastic stresses in the Ca → 0 limit we
similarly choose

β = Ca−1/4β̂. (9)

Following the straightforward steps in Ajaev and
Homsy [2], the resulting lubrication equation is

∂ ĥ

∂ t̂
= ∂

∂ x̂

[
−ĥ3 ∂3ĥ

∂ x̂3
+ β̂ĥ3/2N (x̂, t̂)

]
+ δv

∂2ĥ
∂ x̂2

K̂ + ĥ
, (10)

where the terms on the right-hand side correspond respectively
to pressure, thermal fluctuations, and evaporation of the film.
Equation (10) is simplified by several assumptions, the first
being that the saturation temperature is equivalent to the
wall temperature. This assumption is justified given that
our simulation domain was essentially isothermal, with the
temperature maintained by using a weak stochastic thermostat
on the solid wall. Upon inspection, there existed no measurable
thermal gradients within the domain. This is consistent with
the fact the K̂ is approximately 400 times greater than ĥ for the
precursor film, which essentially minimizes thermal gradients
for the majority of the surface area of the fluid interface.
A second assumption is that there is no disjoining pressure
contribution from van der Waals or any other forces. This
assumption will be discussed in section 3.1.

Another key point that must be addressed is that (10)
does not formally obey the fluctuation-dissipation theorem.
The fluctuation-dissipation theorem relates the energy of
fluctuations of a system to the energy dissipation of an
infinitesimal external perturbation of the system, yielding in
the equations of motion a fluctuation term with a magnitude
proportional to the square root of the linearized dissipative
term. However (10) only contains the fluctuations from the
interaction with viscous dissipation, without accounting for
the fluctuations associated with the evaporative dissipation. To
justify this we linearize the deterministic dimensional version
of (10) for a single wavenumber component q by making the
substitution

h(x, t) = H + δh(t) cos(qx). (11)

Assuming that H � δh(t), leads to

∂δh(t)

∂ t
=

⎛
⎜⎜⎜⎝− H 3γ q4

η︸ ︷︷ ︸
Viscous

− 2kTsρvγRq2

ρ2L(k
√

2πT 3/2
s + 2HLRρv)︸ ︷︷ ︸

Evaporative

⎞
⎟⎟⎟⎠

× δh(t), (12)

and we compare the relative importance of the viscous versus
evaporative dissipation terms by substituting values of q and
H corresponding to the length and thickness of the drop.
This long-wavelength choice for q maximizes the relative
importance of the evaporation dissipation. Substituting these
values and the physical properties of the liquid into the two
linear dissipation terms of (12) suggests the viscous dissipation
term is 1.8 × 106 larger than the evaporative dissipation. Thus
because the magnitude of the fluctuations in this linear model
is proportional to the square root of the dissipation term, the
viscous fluctuation is expected to be over 1000 times greater
than the evaporative fluctuation term, justifying its neglect
in the current study. Although the fluctuating evaporation
is negligible, evaporation itself is still important due local
variations in pressure because of the interface curvature, and
this is accounted for in the evaporation model.

3. Methods

3.1. Atomistic simulations

All atoms in the simulation are modeled with a Lennard-
Jones pair potential, which includes a 1/r 6 dispersion (van der
Waals) attraction and an empirical 1/r 12 repulsion:

uLJ(r) =

⎧⎪⎨
⎪⎩

4ε

[
σ 6

r 6
− σ 12

r 12

]
for r � rc

0 for r > rc,

(13)

where ε is the interaction energy, r is the distance between
the two atoms, and σ is the interaction length scale. The
simulations employ a cutoff radius rc = 2.5σ . Most physical
properties are insensitive to this rc, but it does decrease the
effective surface tension by a factor of about two [21]. This
is accounted for in the continuum model as discussed in
section 3.2. Because the drop and the precursor film are thicker
than this 2.5σ cutoff, there is also in effect no disjoining
pressure, which is why it was not included in the analysis
leading to (10). This is advantageous in that it simplifies
the comparison between the molecular dynamics and solutions
of (10). Disjoining pressure is not expected to significantly
alter the spreading of a drop of the kind considered [4].

To suppress evaporation and condensation, which
would muddle results, Lennard-Jones atoms are joined into
polymers using the finite extensible nonlinear elastic (FENE)
potential [15, 9],

uf =

⎧⎪⎨
⎪⎩

−1

2
k R2

o log

[
1 − r 2

R2
o

]
for x < Ro

∞ for r � Ro,

(14)

where k is the spring strength and Ro is the reference length
of the polymer. Taking k = 30ε/σ 2 and Ro = 1.5σ has
been shown to provide realistic packing without imposing any
significant new restriction on the numerical time step [15].

The atomistic simulation contained 68 134 fluid atoms
and 44 200 wall atoms. The fluid atoms were in two-atom
‘polymers’. Each atom had a mass of mf = m. The interaction
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Figure 1. Simulation domain.

Table 1. Atomistic parameters.

Symbol Description Value

m Atom mass 1.3277 × 10−26 kg
ε/kB Lennard-Jones interaction energy 118 K
σ Lennard-Jones length scale 3.405 × 10−10 m

energy between all fluid and solid atoms was the same: εff =
εsf = ε. The values of the molecular parameters were set to
match that of liquid argon as listed in table 1. As shown in
figure 1, the solid atoms were arranged into 4 layers of an FCC
lattice of length 1760σ in x and depth (into the page) of 8σ in
z. The melting temperature of the solid atoms was decreased
by taking ms = 10 m and εss = 10ε.

Time integration was via the velocity Verlet algorithm,
which has excellent but not exact conservation properties.
Because of the long times of these simulation, a weak
thermostat was applied to maintain the temperature. Using a
weak stochastic Andersen [3] thermostat, solid substrate atoms
were randomly chosen and then reassigned a velocity from the
appropriate Boltzmann distribution. Because the thermostat
was weak and only modified the velocity of the solid atoms,
spreading dynamics should not be affected by this procedure.

The initial condition was generated by ‘cutting’ out a
droplet shape from a flat thermally equilibrated thick fluid
film. A precursor film was also included over the whole
domain (see figure 1), whose thickness was set to be slightly
larger than the cutoff radius of the potential (13). This choice
simplifies analysis by essentially removing any disjoining
pressure effects. Because our cutting procedure introduces a
non-equilibrated shape to our drop from an equilibrated flat
profile, there is an initial period of local equilibration where
a large amount of evaporation takes place. This portion of
the simulation was not included in results and our ‘time zero’,
from which the initial conditions for (10) were defined, was a
time when this initial period of equilibration seemed to have
ceased. Different choices for this ‘time zero’ do not alter the
conclusions of this work.

3.2. Lubrication equation solver

Equation (10) was solved with an implicit Crank–Nicholson-
like time integration and a Fourier collocation discretization in

Table 2. Properties of the molecular fluid.

Symbol Description Value

T Equilibrium temperature 100 K
ρ Fluid density 1365 kg m−3

ρv Vapor density 33.6 kg m−3

L Latent heat of vaporization 649 kJ kg−1

k Thermal conductivity 0.0991 J m−1

η Viscosity 1.101 × 10−4 kg ms−1

γ Surface tension 1.07 × 10−2 kg m2 s−2

x . The implicit solve was by Newton’s method. The stochastic
noise term was generated every time step and included as a
forcing term. The initial condition was taken as the measured
interface of the molecular spreading drop as defined by the
density isopleth ρc = ρf/10, where ρf is the bulk fluid
density. Results are insensitive to our choice of ρc. Ten
such stochastic solutions are averaged to produce ensemble
averaged spreading solutions.

For direct comparison between the molecular simulation
and the predictions of the continuum model (10), the physical
parameters of the molecular fluid needed to be independently
determined (see table 2). Using small samples of the molecular
fluid, thermal conductivity k, viscosity η, and surface tension
γ were all calculated using established techniques [17, 5].
The latent heat of vaporization L, which is important for
modeling evaporation, was less straightforward to estimate. To
do this the critical temperature and pressure of the fluid were
measured by plotting the equilibrium fluid film thickness in
a closed container as a function of temperature. This plot
established the critical temperature and pressure at the point
where film thickness versus temperature was discontinuous.
These critical values were used in an accepted semi-empirical
equation [22] along with the simulation vapor density and
pressure to produce a value for L. This number was confirmed
to be sufficiently accurate by measuring the condensation
at the edge the molecular simulation away from the drop
(averaged over 60σ in x) and comparing it with thickness
predictions based on this L value. This comparison is shown in
figure 2. We see the slight accumulation of fluid because of the
evaporation and condensation, and that our predicted value of
L matches this. For comparison, predictions for both L/2 and
3L/2 fail to match the atomistic simulations. Though there is
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Figure 2. Precursor film thickness in black compared with
predictions of (10) for different latent heats: L/2, L, and 3L/2.

clearly finite evaporation and condensation, which motivated
its inclusion in the model, it should also be clear evaporation
played a relatively small role in the dynamics. The drop spread
primarily by other mechanisms.

4. Results and conclusions

To quantify the spreading of the drop, we define its width L via
the second moment about its center xc:

L2(t) =
∫ Lb

0 h(x, t)(x − xc)
2 dx∫ Lb

0 h(x, t) dx
, (15)

with Lb the x domain size. Figure 3 compares L(t) for the
atomistic simulation, the stochastically augmented lubrication
equation, and the standard lubrication equation. Clearly, there
is a poor comparison with the standard lubrication model,
whereas the stochastic lubrication model appears to follow the
atomistic simulation results.

Though this comparison is striking, it should be clear that
this relative importance of the stochastic spreading term is not
expected in all cases. Davidovitch et al [4] discusses why
this type of thermal spreading would only be found in certain
regimes. For self-similar spreading drops with initial height ho,
they showed that thermal forcing should dominate the surface
tension only when

h(t) � h2
o

x∗ and |x − xc| � x∗, (16)

with x∗ = h7/6
o W 1/6/l1/3

T and ht the current height of the drop.
What (16) indicates is that drop needs to be relatively flat, so
that the pressure supplied from the curvature in the interface is
relatively small, and that stochastic stress dominated spreading
will occur in regions farther away from the drop center than x∗.
The first inequality is the more difficult to satisfy in atomistic
simulations, because it requires relatively long run times, while
the second inequality is often obtained in any large molecular
simulation of spreading drops [10, 9]. Clearly, the smallness

Figure 3. Drop spreading: molecular simulation, stochastic
lubrication model (ensemble average of ten simulations), and the
standard lubrication model.

of W in our case makes both these conditions easier to satisfy.
Our simulation ran almost 3 × 106

√
mσ 2/ε but it still only

slightly surpassed the first condition as a simple inequality, h =
5.6 nm being only slightly less than h2

o/x∗ = 6.4 nm. Other
simulations of shorter spreading times or of higher viscosity
drops would not spread far enough to enter into this regime.
Another challenge is achieving enough spreading for it to be
noticeable, which motivated our choice of fluid. The two-atom-
polymer model was selected as a balance between having a low
enough viscosity that enough spreading could occur but small
enough evaporation that spreading is still the dominant mode
of fluid transport.

In conclusion, for the regime considered the thermal
spreading of thin liquid films appears to more than double
the spreading rate. It also appears that current stochastic fluid
equations quantitatively reproduces this behavior.
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